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Introduction

Lunar regolith dust poses a significant challenge for
long-duration missions. During Apollo, it was found
to abrade equipment and cause respiratory
irritation (“lunar hay fever”).

Methods

Toxicity:

This work presents two parallel studies aiming to:

1. Evaluate the cytotoxic effects of lunar dust

Human pulmonary alveolar epithelial (TT1) and
macrophage-like (THP-1) cells were exposed to LMS-
1D and LHS-1D, and quartz at concentrations of O-
200pg/mL for 24 hours. ZnO was the positive control,
and deionised water was a vehicle control (VC).

Sustainable Filtration:
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Figure 1 MTT assay results following 24-hour exposure.

Data show percentage of mitochondrial activity compared to untreated
cells defining 100% activity. Bars show the mean and error bars denote
standard error of the mean. VC = vehicle control (deionised water) *P<0.05,
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Figure 3 Confocal microscope images of THP-1 cells exposed to LHS-1D
for 24 hours.

Superoxide radicals (ROS) are shown as red. Images are taken at x40
magnification with a zoomed in region of interest (ROI).

Figure 2 LDH assay results following 24-hour exposure.

Data show percentage of LDH release compared to a LDH positive control
defining 100% release. Bars show the mean and error bars denote standard error
of the mean. VC = vehicle control (deionised water). *P<0.05.

**P<0.01, ***P<0.0001, ****P<0.00001.

Sustainable Filtration:

Efficiency vs Pressure Drop

Basalt-fibres and Polyfloss exhibited high efficiencies
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at lower pressure drops (Fig. 4), indicating reduced 1¢ .
energy requirements. Organic materials performed ; *
less efficiently and consistently. :
&

Basalt 6mm indicated most EVAs carried out per
HEPA filter, 868 EVAs (Fig. ). Estimates varied
between similarly efficient pre-filters.
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Pre-filter materials indicated variable rates and ]
relationships for HEPA loading (Fig 6). The best fit for k
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global regressions varied between pre-filters. :

Figure 4 Pre-filter efficiency related to pressure drop.
Prefilters exhibiting a high efficiency compared to a low pressure drop (relating
to lower system energy requirements) are most ideal; this is the top left

qguadrant of the graph.

Future Integration

The toxicity study provides a valuable framework for future
experiments. The filtration system will provide “filtered” vs.
“unfiltered” dust samples to test on THP-1and TT1 cells, evaluating
pre-filter effectiveness in removing biologically harmful particles and
allowing optimisation of filter design.
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Figure 5 Estimated HEPA filter longevity for number of EVAs carried out.
Data utilises mean pre-filter efficiencies (%) based on 1 HEPA filter usage per EVA.

Figure 6 HEPA filter pressure drops measured over the experiment.
Pressure drops are normalised according to the 5s reading for each pre-
filter.

Conclusion

Mitigating lunar dust hazards requires a synergistic understanding of the dust’s biological
effects and the development of robust countermeasures. This work contributes on both
fronts by elucidating the toxicological impact of LDS on human pulmonary alveolar cells and
by pioneering a sustainable dust filtration solution. These will help guide designing life
support systems, minimis crew exposure to hazardous dust, an essential step toward safe and
sustainable long-term lunar habitats.
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